Mathematics II

Marcos Bujosa

Universidad Complutense de Madrid

04/04/2024

1 Highlights of Lesson 4

Highlights of Lesson 4

- Elementary transformations
- Indentifying singular matrices by elimination
- Matrix multiplication of Elementary matrices

You can find the last version of these course materials at
https://github.com/mbujosab/MatematicasII/tree/main/Eng

- Marcos Bujosa. Copyright (C) 2008-2024

Algunos derechos reservados. Esta obra está bajo una licencia de Creative Commons Reconocimiento-Compartirlgual 4.0 Internacional. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-sa/4.0/o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

- Pivot is the first non-zero component of each column.
- Elimination: modifies a matrix until all components at the right-hand side of each pivot are zeros

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 8 & 4 \\
1 & 1 & 1
\end{array}\right] \xrightarrow{\left[(-3)^{\tau}+\mathbf{2}\right]}\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 2 & 4 \\
1 & -2 & 1
\end{array}\right] \xrightarrow{\left[(-2)^{\tau} \mathbf{2}+3\right]}\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 2 & 0 \\
1 & -2 & 5
\end{array}\right]=\mathbf{L}
$$

Elimination algorithm on \mathbf{A}
modifies \mathbf{A} using a sequence of elementary transformations
Goal
to get a (pre)echelon form

- pre-echelon: all components on the right side of each pivot are zero.
- echelon: if any column before a non-null column $\mathbf{A}_{\mid j}$ is non-null column and its pivot is above the pivot of $\mathbf{A}_{l j}$.

It is always possible to find a (pre)echelon form by elimination
Rank (rg): the number of pivots in any of its pre-echelon forms
\mathbf{A} is singular if its pre-echelon forms have null-columns $(\operatorname{rg}<n)$
$n \times n$

L-4

6 Matrix multiplication: elementary matrices

We call $\mathbf{I}_{\boldsymbol{\tau}}$ "Elementary matrix":

$$
\mathbf{A}\left(\mathbf{I}_{\boldsymbol{\tau}}\right)=\mathbf{A}_{\boldsymbol{\tau}}
$$

This specific elementary matrix $\mathbf{I}_{\boldsymbol{\tau}}$ is written as $\underset{[(-3) 1+2]}{\boldsymbol{\mathbf { I } ^ { 2 }}}$

$$
\mathbf{A}\left(\begin{array}{ll}
\mathbf{I}_{[(-3) \mathbf{1}+\mathbf{2}]}^{\boldsymbol{\tau}}
\end{array}\right)=\mathbf{A}_{[(-3) \mathbf{1 + 2]}}^{\boldsymbol{\tau}}
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 2 & 4 \\
1 & -2 & 1
\end{array}\right][\quad]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 2 & 0 \\
1 & -2 & 5
\end{array}\right]
$$

This specific elementary matrix $\mathbf{I}_{\boldsymbol{\tau}}$ is written as $\underset{\left[(-2)^{2+3]}\right.}{\boldsymbol{I}}$

$$
\mathbf{A}_{[(-2) \mathbf{2}+\mathbf{3}]}^{\mathbf{I}^{\boldsymbol{1}}} \mathbf{)}=\underset{\left[(-2)^{\mathbf{2}+\mathbf{3}]}\right.}{\mathbf{A}^{\boldsymbol{\tau}}}
$$

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 8 & 4 \\
1 & 1 & 1
\end{array}\right] }
\end{aligned} \xrightarrow{\left[(-3)^{\boldsymbol{\tau}} \mathbf{1 + \mathbf { 2 }]}\right.}\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 2 & 4 \\
1 & -2 & 1
\end{array}\right] \xrightarrow{\left[(-2)^{\boldsymbol{\tau}} \mathbf{2 + 3}\right]}\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 2 & 0 \\
1 & -2 & 5
\end{array}\right]=\mathbf{L} .
$$

there is a matrix that does the whole job at once

$$
\mathbf{A}_{\substack{[(-3) \mathbf{1 + 2]} \\[(-2) \mathbf{2}+\mathbf{3}]}}=\mathbf{A}\left(\left(\mathbf{I}_{[(-3) \mathbf{\tau}+\mathbf{2}]}\right)\left(\mathbf{I}_{\left[(-2)^{2+3]}\right.}^{\tau}\right)\right)=\mathbf{A l}_{\substack{[(-3) \mathbf{1}+\mathbf{2}] \\[(-2) \mathbf{2}+\mathbf{3}]}}=\mathbf{L}
$$

$$
\mathbf{A}_{\tau_{1} \cdots \tau_{k}}=\mathbf{A}\left(\boldsymbol{I}_{\tau_{1} \cdots \tau_{k}}\right)
$$

10 Interchange or swap matrices

Which matrix exchanges the columns?

$$
\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right][\square]=\left[\begin{array}{ll}
c & a \\
d & b
\end{array}\right]
$$

Which matrix exchanges the rows? where do we put that matrix?

$$
\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \quad=\left[\begin{array}{ll}
b & d \\
a & c
\end{array}\right]
$$

Matrix multiplication is not commutative!

Interchange of columns:

$\mathbf{A}_{[i \underset{\sim}{\boldsymbol{\tau}}]} \rightarrow$ swicht columns i and j of \mathbf{A}

$$
\left[\begin{array}{lll}
1 & -3 & 0 \\
1 & -6 & 3
\end{array}\right]_{\substack{\boldsymbol{2} \rightleftharpoons \mathbf{~}}}=\left[\begin{array}{lll}
1 & 0 & -3 \\
1 & 3 & -6
\end{array}\right]
$$

We can switch two columns by a sequence of elementary transformations

$$
\text { Matrix } \mathbf{I}_{[i \approx j]}^{\tau} \text { is call a exchange matrix }
$$

Questions of the Lecture 4

(L-4) Question 1.
 into an echelon form?
(b) Multiply those $\mathbf{I}_{\boldsymbol{\tau}_{i}}$ to get one matrix \mathbf{E} that does elimination: $\mathbf{A E}=\mathbf{K}$.

Based on (Strang, 1988, exercise 24 from section 1.4.)
(L-4) Question 2. Consider the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
-1 & -3 & -2 \\
0 & 1 & c
\end{array}\right]
$$

For what value(s) of c the matrix is singular (we can't find three pivots)?

$$
\underset{[\mathfrak{G}]}{\mathbf{I}_{\boldsymbol{\varepsilon}}}=\text { Identity matrix I with rearranged columns }
$$

Let's see the 3×3 case

$$
\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right], \quad \begin{aligned}
& {[\mathbf{1} \underset{\sim}{\boldsymbol{\tau}}]} \\
& \\
&
\end{aligned}
$$

How many 3×3 pemutations can we find?
what happens if I multiply two permutation matrices?

L-4

(L-4) Question 3. Consider the following 3 by 3 matrices.
(a) $\binom{\mathbf{I}}{\left[(-1)^{\boldsymbol{1}+\mathbf{2}]}\right.}$ subtracts column 1 from column 2 and then $\left(\underset{\left[\mathbf{2} \xlongequal{\boldsymbol{\tau}} \boldsymbol{I}_{\mathbf{T}}\right)}{ }\right)$ exchanges $[(-1) 1+2]$
columns 2 and 3. What matrix \mathbf{E} does both steps at once?

Explain why \mathbf{M} and \mathbf{N} are the same but the $\mathbf{I}_{\boldsymbol{\tau}}^{[2=3]}$'s are different.
Based on (Strang, 1988, exercise 28 from section 1.4.)
(L-4) Question 4. Elimination matrices $\mathbf{I}_{[(?))_{1+2]}^{\tau}}$ and $\underset{\left[(?) \boldsymbol{I}_{2+3]}^{\tau}\right.}{ }$ will reduce \mathbf{A} to
triangular form. Find \mathbf{E} so that $\mathbf{A E}=\mathbf{L}$ is lower triangular (echelon), if \mathbf{A} is

$$
\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 4 & 9 \\
1 & 3 & 9
\end{array}\right]
$$

(L-4) Question 5. Although we will only consider as elementary the Type I and II transformations, in most of the Linear Algebra books appears a third type: the exchange of columns

$$
\mathbf{A}_{[p \stackrel{\tau}{\rightleftharpoons} \boldsymbol{s}]} \rightarrow \text { Exchanges columns } p \text { and } s \text { of } \mathbf{A} .
$$

Prove that a column exchange is, in fact, a sequence of Type I and $I /$ elementary transformations. Try transforming $\underset{2 \times 2}{\mathbf{I}}$ in $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ by elementary transformations of the columns.
(L-4) Question 6. Write down the 3 by 3 matrices that produce these elimination steps:
(a) $\mathbf{I ~}_{\left[(-5)^{\boldsymbol{1}+\mathbf{2}]}\right.}$ substracts 5 times column 1 from column 2,
(b) $\mathbf{I} \boldsymbol{\tau}^{\tau}$ substracts 7 times column 2 from column 3,
(c) $\boldsymbol{I}_{[\mathcal{G}]}^{[(-7) 2+3]}$ exchanges columns 1 and 2 , and then columns 2 and 3
(Strang, 2003, exercise 1 from section 2.3.)

L-4) Question 7. Consider the matrices of Question 6.
(a) when multiplying by $\mathbf{I}_{\left[(-5)^{1+2]}\right.}^{\tau}$ and then by $\mathbf{I}_{\left[(-7)^{2+3]}\right.}^{\tau}$ the matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ we get $\mathbf{A}_{\left[(-5)^{\boldsymbol{\tau}} \mathbf{1 + 2]}\right.}=\left[\begin{array}{c}{[(-5) \mathbf{1 + 2]}} \\ ;\end{array}\right]$.
(b) But, when multiplying by $\mathbf{I}_{\left[(-5)^{1+2]}\right.}$ before and then by $\boldsymbol{I}_{\left[(-7)^{2+3}\right]}$ we get $\mathbf{A}_{\left[(-7)^{\boldsymbol{\tau}}+\mathbf{3}\right]}=[\quad ; \quad]$.

$\left[(-7)^{\boldsymbol{\tau}} \mathbf{2 + 3}\right]$ $[(-5) \mathbf{1 + 2}]$

(c) When $\underset{[(-7) 2+3]}{\tau}$ comes first, the column \qquad feels no effect from column \qquad -
This property will become very important in the LU factorization!
(Strang, 2003, exercise 2 from section 2.3.)
(L-4) Question 8. What matrix \mathbf{M} sends $\boldsymbol{v}=(1,0$,$) to (0,1$,), es decir $\boldsymbol{v} \mathbf{M}=(0, \quad 1$,$) ; and also sends \boldsymbol{w}=(0, \quad 1$,$) to (1, \quad 0$,$) , es decir \boldsymbol{w} \mathbf{M}=(1, \quad 0$,$) ?$
(L-4) Question 9. Consider a permutation (interchange) matrix $\underset{[i=j]}{\boldsymbol{\tau}}$, if we compute the product $\mathbf{A}(\underset{[i \stackrel{I}{\tau}]}{\boldsymbol{\tau}})$, we get a new matrix like \mathbf{A}, but with exchanged columns. What happen if we compute the product $(\underset{[i \xlongequal{\boldsymbol{I}} \boldsymbol{\tau}]}{\boldsymbol{\tau}}) \mathbf{A}$? Check your answer with a 2 by 2 example.

1 Highlights of Lesson 5

Highlights of Lesson 5

- Inverse of A
- Gauss-Jordan elimination / finding \mathbf{A}^{-1}
- Inverse of $\mathbf{A B}, \mathbf{A}^{\top}$

A squared of order n has inverse (is invertible) if exists \mathbf{B} such that

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I} .
$$

Then

$$
\mathbf{B}=\mathbf{A}^{-1} \quad \text { and } \quad \mathbf{A}=\mathbf{B}^{-1} .
$$

Not all matrices have inverse

Squared matrices with no inverse are called singular matrices

Singular case (no inverse)
Can we find $\boldsymbol{x} \neq \mathbf{0}$ such that $\mathbf{A} \boldsymbol{x}=\mathbf{0}$?

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right][]=\binom{0}{0}
$$

If $\mathbf{A} \boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x} \neq \mathbf{0} \Rightarrow$ there is no \mathbf{A}^{-1}
The existence of \mathbf{A}^{-1} leads to a contradiction
If $\mathbf{A} \boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x} \neq \mathbf{0} \quad \Rightarrow \quad \mathbf{A}^{-1} \mathbf{A} \boldsymbol{x}=\mathbf{A}^{-1} \mathbf{0} \quad \Rightarrow \quad x=\mathbf{0}$.

When \boldsymbol{A}^{-1} does exist

$$
\text { the only solution to } \quad \mathbf{A x}=\mathbf{0} \quad \text { is } \boldsymbol{x}=\mathbf{0} \text {. }
$$Singular case (no inverse)

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]
$$

Is it possible to find a matrix \mathbf{B} such that $\mathbf{A B}=\mathbf{I}$?
...columns of I should be linear combinations of columns of
A. . . but both columns lie on the same line.

So

A is singular

5 Calculating the inverse matrix

$$
\mathbf{A}\left(\mathbf{A}^{-1}\right)=\mathbf{I}
$$

$$
\left[\begin{array}{ll}
1 & 3 \\
2 &
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So. . . we are solving m systems (of m equations each)

$$
\left[\begin{array}{ll}
1 & 3 \\
2 &
\end{array}\right]\binom{a}{b}=\binom{1}{0} \quad\left[\begin{array}{ll}
1 & 3 \\
2 &
\end{array}\right]\binom{c}{d}=\binom{0}{1}
$$

Gauss-Jordan elimination (obtaining a reduced echelon form \mathbf{R}) apply elementary transformations until a echelon matrix with only zeros to the left of each pivot (and all pivots equal to 1) is achieved

Let's solve the linear systems

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\binom{a}{b}=\binom{1}{0} \quad\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\binom{c}{d}=\binom{0}{1}
$$

applying Gauss-Jordan elimination on \mathbf{A} stacked with I

$$
\left[\begin{array}{l}
\mathbf{A} \\
\mathbf{I}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 7 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow
$$

$\rightarrow \quad=$

If $\mathbf{R}=\mathbf{I}$, we have found \mathbf{A}^{-1}

When \mathbf{A} and \mathbf{B}, of order n, are invertible, $(\mathbf{A B})$ is invertible
what matrix gives me the inverse of $\mathbf{A B}$? lets try with $\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)$:
$\mathbf{A B}\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)=$

$$
\left[\begin{array}{c}
\mathbf{A} \\
\mathbf{I}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 7 \\
1 & 0 \\
0 & 1
\end{array}\right] \xrightarrow{\left[(-3)^{\tau} \mathbf{1}+\mathbf{2}\right]}
$$

$$
\xrightarrow{\left[(-2)^{\boldsymbol{2}+1]}\right.}
$$

that is, since

$$
\mathbf{A}_{\tau_{1} \cdots \tau_{k}}=\mathbf{A}\left(\mathbf{I}_{\tau_{1} \cdots \tau_{k}}\right):
$$

$$
\text { who is } \mathbf{I}_{\tau_{1} \cdots \tau_{k}} \text { ? }
$$

therefore $\mathbf{A}^{-1}=$

9 Inverse of a transpose matrix
let me transpose both sides

$$
\left(\left(\mathbf{A}^{-1}\right)^{\top}\right) \mathbf{A}^{\top}=\mathbf{I}
$$

then

$$
\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right) \mathbf{A B}=
$$

the inverse of \mathbf{A}^{\top} is

Are interchange matrices $\underset{[\boldsymbol{i} \boldsymbol{\sim} \boldsymbol{\tau}]}{ }$, invertible?

It is easy to check that

$$
\left(\underset{[\mathfrak{G}]}{\mathbf{I}_{\boldsymbol{f}}}\right)^{\top}\left(\underset{[\mathfrak{I}]}{\mathbf{I}_{\boldsymbol{\mathcal { G }}]}}\right)=\mathbf{I} \quad \Longrightarrow
$$

Given \mathbf{A} of order n, the following statements are equivalent

1. No zero columns in $\mathbf{A}_{\boldsymbol{\tau}_{1} \cdots \tau_{p}}=\mathbf{K}$ (pre-echelon matrix).
2. A has inverse.
3. \mathbf{A} is product of elementary matrices.

$$
\mathbf{A}_{\tau_{1} \cdots \boldsymbol{\tau}_{k}}=\mathbf{A}\left(\mathbf{I}_{\boldsymbol{\tau}_{1} \cdots \boldsymbol{\tau}_{k}}\right)=\mathbf{I} \quad \Rightarrow \quad \mathbf{A}=\left(\mathbf{I}_{\boldsymbol{\tau}_{1} \cdots \boldsymbol{\tau}_{k}}\right)^{-1}
$$

where
$\left(\mathbf{I}_{\boldsymbol{\tau}_{1} \cdots \boldsymbol{\tau}_{k}}\right)^{-1}=\left(\left(\mathbf{I}_{\boldsymbol{\tau}_{1}}\right) \cdots\left(\mathbf{I}_{\boldsymbol{\tau}_{k}}\right)\right)^{-1}=\left(\mathbf{I}_{\boldsymbol{\tau}_{k}^{-1}}\right) \cdots\left(\mathbf{I}_{\boldsymbol{\tau}_{1}^{-1}}\right)=\mathbf{I}_{\boldsymbol{\tau}_{k}^{-1} \cdots \boldsymbol{\tau}_{1}^{-1}}$

Questions of the Lecture 5

\qquad
(L-5) Question 1. Use the Gauss-Jordan method to invert
(a) $\mathbf{A}_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$.
(b) $\mathbf{A}_{2}=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
(c) $\mathbf{A}_{3}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
(Strang, 1988, exercise 6 from section 1.6.)
(L-5) Question 2.
(a) If \mathbf{A} is invertible and $\mathbf{A B}=\mathbf{A C}$, prove quickly that $\mathbf{B}=\mathbf{C}$.
(b) If $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, find an example with $\mathbf{A B}=\mathbf{A C}$, but $\mathbf{B} \neq \mathbf{C}$.
(Strang, 1988, exercise 4 from section 1.6.)
(L-5) Question 3. Use the Gauss-Jordan method to invert the generic matrix 2×2

$$
\mathbf{M}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The matrix is invertible (not singular) only when...
(L-5) Question 4. Use the Gauss-Jordan method to invert the following matrices.

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & 1 & 2 \\
-1 & 0 & 1 \\
0 & 1 & 6
\end{array}\right] ; \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 4 & -2 \\
1 & 3 & 1
\end{array}\right]
$$

(L-5) Question 5. If the 3 by 3 matrix \mathbf{A} has $\mathbf{A}_{\mid 1}+\mathbf{A}_{\mid 2}=\mathbf{A}_{\mid 3}$, show that \mathbf{A} is not invertible, by two different methods:
a) Find a nonzero solution \boldsymbol{x} to $\mathbf{A} \boldsymbol{x}=\mathbf{0}$
b) Elimination keeps column $1+$ column $2=$ column 3 . Explain why there is no third pivot.
(Strang, 1988, exercise 26 from section 1.6.)
(L-5) Question 6. Find the inverses of
(a) $\mathbf{A}_{1}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0\end{array}\right]$
(b) $\mathbf{A}_{2}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 / 2 & 1 & 0 & 0 \\ 0 & -2 / 3 & 1 & 0 \\ 0 & 0 & -3 / 4 & 1\end{array}\right]$
(c) $\mathbf{A}_{3}=\left[\begin{array}{llll}a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d\end{array}\right]$

Strang, 1988, exercise 10 from section 1.6.)
(L-5) Question 10. The 3 by 3 matrix \mathbf{A} reduces to the identity matrix \mathbf{I} by the following three column operations (in order):

$$
\begin{array}{ll}
\underset{[(-4) \mathbf{1}+\mathbf{2}]}{\boldsymbol{\tau}}: & \text { Subtract } 4 \text { times column } 1 \text { from column } 2 . \\
\underset{[(-3) \boldsymbol{1}+\mathbf{3}]}{\boldsymbol{\tau}}: & \text { Subtract } 3 \text { times column } 1 \text { from column } 3 . \\
{[(-1) \mathbf{\boldsymbol { \tau } + \mathbf { 2 }]}}
\end{array}: \quad \text { Subtract column } 3 \text { from column } 2 . ~ \$
$$

(a) Write \mathbf{A}^{-1} in terms of elementary matrices $\mathbf{I}_{\boldsymbol{\tau}}$. Then compute \mathbf{A}^{-1}.
(b) What is the original matrix \mathbf{A} ?
(Based on MIT Course 18.06 Quiz 1, October 4, 2006)

Find $\mathbb{I}_{[\mathcal{E}]}{ }^{-1}$. Can you say something else about the relationship between $\mathbf{I}_{\boldsymbol{\tau}_{\mathcal{G}}}$ and $\mathrm{I}_{[\mathcal{E}]}{ }^{-1}$?
What values of a and b make the matrix singular?
(Strang, 1988, exercise 42 from section 1.6.)
(L-5) Question 8. Find $\mathbf{E}^{2}, \mathbf{E}^{8}$ and \mathbf{E}^{-1} if $\quad \mathbf{E}=\left[\begin{array}{ll}1 & 0 \\ 6 & 1\end{array}\right]$
(Strang, 1988, exercise 6 from section 1.5.)
(L-5) Question 9. Consider the following permutation matrix:

$$
\underset{[\mathcal{G}]}{\mathbf{I}_{\boldsymbol{\tau}}}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\tau \\
\mathcal{E}]
\end{array}\right.
$$

(L-5) Question 7. Find the inverse of

$$
\mathbf{A}=\left[\begin{array}{lll}
a & b & b \\
a & a & b \\
a & a & a
\end{array}\right]
$$

(L-5) Question 11. The 3 by 3 matrix \mathbf{A} reduces to the identity matrix \mathbf{I} by the following three row operations (in order):

$$
\begin{array}{ll}
\underset{[(-4) \mathbf{1}+\mathbf{2}]}{\boldsymbol{\tau}}: & \text { Subtract } 4 \text { times row } 1 \text { from row } 2 . \\
\underset{[(-3) \mathbf{1}+\mathbf{3}]}{\boldsymbol{\tau}}: & \text { Subtract } 3 \text { times row } 1 \text { from row } 3 . \\
\underset{[(-1) \mathbf{3}+\mathbf{2}]}{\boldsymbol{\tau}}: & \text { Subtract row } 3 \text { from row } 2 .
\end{array}
$$

(a) Write \mathbf{A}^{-1} in terms of the \mathbf{E} 's. Then compute \mathbf{A}^{-1}.
(b) What is the original matrix \mathbf{A} ?

MIT Course 18.06 Quiz 1, October 4, 2006)
(L-5) Question 12.
(a) Find the inverse of $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]$ and $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(b) Find the inverse of the following matrix using the Gauss-Jordan method

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
a & b & c & d
\end{array}\right]
$$

(Poole, 2004, exercise 36, 38 and 59 from section 3.3.)
(L-5) Question 13. Consider the squared matrices \mathbf{A}, \mathbf{B}, and \mathbf{C}. True or false?
a) If $\mathbf{A B}=\mathbf{I}$ and $\mathbf{C} \mathbf{A}=\mathbf{I}$ then $\mathbf{B}=\mathbf{C}$
(b) $(\mathbf{A B})^{2}=\mathbf{A}^{2} \mathbf{B}^{2}$
(L-5) Question 14. Consider the matrix $\mathbf{A}=\left[\begin{array}{cccc}0 & 1 & 0 & 2 \\ 1 & a & 0 & 2 a \\ a & 0 & 1 & 0 \\ 1 & 0 & a & 1\end{array}\right]$
a) Prove that \mathbf{A} is invertible for any value of a.
(b) Compute \mathbf{A}^{-1} when $a=0$.
(L-5) Question 15. Consider the matrix $\mathbf{A}=\left[\begin{array}{cccc}1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2\end{array}\right]$. Find \mathbf{A}^{-1}.
(L-5) Question 16. Find (if it is possible) the inverse of the following inverses

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] ; \quad \mathbf{B}=\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & -2 & 1 \\
-2 & 1 & 1
\end{array}\right]
$$

(L-5) Question 17. There is a finite number ($n!$) of $n \times n$ permutation matrices. In addition, any power of a permutation matrix is a another permutation matrix. Use these facts to prove that $\left(\underset{[\mathcal{E}]}{\mathbf{I}_{\boldsymbol{\mathcal { E }}}}\right)^{r}=\mathbf{I}$ for some integer numbers r

Poole, D. (2004). Álgebra lineal. Una introducción moderna.
Thomson Learning, Mexico D.F. ISBN 970-686-272-2.
Strang, G. (1988). Linear algebra and its applications. Thomson Learning, Inc., third ed. ISBN 0-15-551005-3.
Strang, G. (2003). Introduction to Linear Algebra.
Wellesley-Cambridge Press, Wellesley, Massachusetts. USA,
third ed. ISBN 0-9614088-9-8.

